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INTRODUCTION 

Metallic nanoparticles (NPs) are being viewed as 

the future material and represent the starting point 

for nanostructured materials and devices1. These 

NPs have gained great interest in the last decades 

due to their unique physical and chemical properties 

leading to their potential use in a wide range of 

applications. In addition, they also exhibit unique 

electronic, magnetic, catalytic and optical properties 

that are different from those of bulk metals2. The 
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metal oxide NPs has entered the scientific spot-light 

in the last years. Among transition metals, interest is 

being shown to copper (Cu) and copper oxides 

(CuO and Cu2O) NPs because of their unique 

properties and potential applications. They have 

numerous scientific and technological applications 

to our day life. Of these applications, use of the 

green synthesized CuO NPs as alternative to the 

antioxidants is of prime interest in fighting 

microbial pathogens. It is well known that many of 

the pathogenic microorganisms acquired their 

pathogenicity by generation of free radicals (FRs)3 

leading to damaging of the host cell walls and cell 

membranes. Role of the antioxidants is proposed to 

scavenge the FRs to prevent the disease progress4. 

CuO NPs are traditionally produced through 

physical5-7 and chemical protocols8-10 although their 

low efficiency with regard to environmental and 

economic parameters. Biological methods have 

been avoided drawbacks of the chemical and 

physical methods and suggested as possible eco-

friendly alternatives for the synthesis of low-cost, 

energy efficient and non-toxic CuO NPs.  Most 

published works on the green biosynthesis of CuO 

NPs used the plant extracts11-14. A rare published 

works were found to utilize different 

microorganisms including algae15, bacteria2 and 

fungi16,17. This lack of published research work on 

the use of fungi for the biosynthesis of CuO NPs is 

not justified. Fungi are characterized by their ease 

of cultivation, requirements of mild experimental 

conditions, easy of downstream processing in 

addition to their secretion of large amounts of 

enzymes. So, this work was planned to study the 

potentiality of some fungi isolated from the 

Egyptian soil as producers of CuO NPs. 

Optimization of the biosynthesis of these NPs by 

the most potential fungus and utilization of the 

synthesized CuO NPs for scavenging the 2,2-

diphenyl-1-picrylhydrazil (DPPH) has been also 

investigated. 

 

 

 

 

MATERIAL AND METHODS 

Chemicals and glasswares 
All chemical used were of analytical grade. All 

reagent solutions were made with deionized water. 

CuO NO3 was purchased from Sigma. The 

glasswares were washed with aqua regia (mixture 

formed by freshly mixing concentrated nitric acid 

and hydrochloric acid in a volume ratio of 1:3) and 

then thoroughly rinsed with deionized water to 

remove any metal contaminant. 

Organisms  

The used fungi were isolated from soil samples 

collected from certain localities of Egypt, identified 

by Assiut University Mycological center (AUMC) 

where they were deposited with their accession 

numbers. The isolated fungi were grown and 

maintained on Czapek’s- Dox agar medium at 30oC 

and sub-cultured whenever required.  

Cultivation of fungi 
Triplicate sets of 250 ml flasks each containing 50 

ml of the Czapek’s broth having the following 

constituents (g/100ml): sucrose, 3; NaNO3, 0.2; 

KH2PO4, 0.1; KCl, 0.05; MgSO4.7H2O, 0.05 and 

FeSO4.5H2O, 0.001were used. The flasks were 

sterilized, left to cool, initially adjusted to pH 6 and 

inoculated with 1 ml of fungal spore suspension 

containing about 106 spores and the cultures were 

incubated at 30oC on rotary shaker adjusted at 150 

rpm for 72 h. By the end of the incubation period, 

the biomass was separated from the culture 

supernatant (CS) by filtration through Whatman 

filter paper No.1. The CS of any fugal isolate was 

collected, centrifuged at 3000 rpm for 10 min. On 

the other hand, the biomass was washed extensively 

with sterile deionized water to remove all possible 

medium components. Both CS and biomass of any 

fungal isolate were separately used as the starting 

material for synthesis of CuO NPs.  

Extracellular biosynthesis of CuO NPs 

Using the CS  

Triplicate sets of 250 ml Erlenmeyer flasks each 

containing 90 ml of the CS and10 ml of 10 mM 

copper nitrate (Cu(NO3)2.3H2O) in deionized water 

was added and mixed well so the final concentration 

would be 1mM. Simultaneously, a positive control 
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(CS) and negative control (1mM Cu (NO3)2.3H2O) 

were also checked for comparison. All sets were 

kept under agitation (150 rpm) at 30oC in the dark. 

Using the washed biomass  

Typically 10 g of biomass (fresh weight) were 

directly brought in contact with 90 ml of 1mM Cu 

(NO3)2.3H2O, kept on the rotary shaker and 

completed as described before. Both positive 

(biomass in deionized water) and negative controls 

were run along with the experimental flasks. 

Optimization of the reaction conditions 
Influence of pH values of the reaction mixture 

(fungal biomass in 1mM Cu(NO3)2.3H2O) on the 

biosynthesis process was studied by adjusting pH of 

different sets of flasks containing the reaction 

mixture as well as the two controls in the range of 

5-10 and the work was completed as above. To 

study the effect of reaction temperature on 

formation of the CuO NPs, the reaction mixtures 

adjusted at pH 6 along with the controls were 

separately incubated at different temperatures under 

the previously specified conditions. The effect of 

changing the salt concentration was studied in the 

specified range.  In the last step, biosynthesis of the 

investigated NPs was followed at different periods 

of incubation under the best favorable conditions. 

Characterization of CuO NPs 

Visual observations 

The reduction of copper ions (Cu2+) was routinely 

monitored by visual inspection. Change in the 

colloidal solutions towards green (or greenish) color 

was taken as preliminary sign of CuO NPs 

formation. 

UV-Vis spectroscopy 

To confirm the formation of CuO NPs, the UV-Vis 

spectrum of the reaction medium showing a change 

in color was monitored after filtration through 0.22 

µm membrane filter (Millex-GS, Millipore, Madrid, 

Spain). Absorption measurements were carried out 

at wavelengths from 200 to 800 nm using a double 

beam spectrophotometer (Metash UV-Vis, model 

UV-8500) at a resolution of 1 nm.  

 

 

High Resolution-Transmission Electron 

Microscopy (HR-TEM) 

Morphology of the CuO NPs was performed in 

central lab of national research center (NRC), 

Dokki, Giza, Egypt.  For this purpose, an aliquot of 

an aqueous suspension of CuO NPs was transferred 

onto a carbon coated copper grid. Samples were 

dried and kept under vacuum in desiccators before 

loading them onto a specimen holder. The grid was 

then scanned using a Jeol JEM-2100 (Made in 

Japan Model Year 2000) operated at a voltage of 

200 kV. 

2,2-Diphenyl-1-picrylhydrazil (DPPH) radical 

scavenging assay 

The free radical scavenging activity (RSA) of the 

CuO NPs was examined in vitro using DPPH 

radical as described by Shimada et al.19. When the 

stable DPPH radical accepts an electron from the 

antioxidant material, its color is reduced from violet 

to yellow diphenylpicrylhydrazine radical that 

measured colorimetrically. Ascorbic acid was used 

as standard antioxidant agent. The DPPH radical 

scavenging activity (RSA) was expressed in 

percentage of inhibition using the following 

formula: 

RSA = [AC- AS] / AC × 100 

Where: AC is the absorbance of the blank control 

and AS is that absorbance of the test sample. 

 

RESULTS AND DISCUSSION 

Screening 

In this work, screening program was used to 

examine potentiality of nineteen fungal isolates for 

the extracellular biosynthesis of CuO NPs. The 

isolated fungi were grown on Czapek’s medium in 

submerged cultures for 72 h and the biomass was 

separated from the CS for each fungus. Both of the 

biomass and CS were separately added to the 

copper nitrate [Cu(NO3)2.3H2O] and incubated 

again  on rotary shaker at 150 rpm for additional 60 

h at 30oC in the dark The change of color from light 

blue to light green or greenish was taken as a 

preliminary sign of CuO NPs biosynthesis.   

The results (Table No.1) show clearly that few 

numbers of fungi could synthesize CuO NPs with 
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appropriate yield. Three fungi could produce these 

NPs using their CS solution. They are Aspergillus 

aureoterreus, Emericella nidulans and Penicillium 

pinophilum. Other two fungi i.e. A. flavus var. 

columnaris and A. sydowii produced the NPs by 

their biomass. Moreover, two fungal species          

(A. carneus and A. fumigatus) could produce the 

CuO NPs using both CS and biomass.  The color 

intensity as well as the UV-Vis spectrum of the 

produced CuO NPs had been investigated. The 

highest yield of the CuO NPs was detected on using 

the biomass of the fungus A. fumigatus. The 

absorption spectrum of the produced NPs varied 

from 315 nm for those produced by A. carneus 

biomass to 360 nm for those synthesized by P. 

pinophilum CS. The peak 335 nm was recorded as 

the maximum absorption in four different cases i.e. 

the biomass of A. flavus var. columnaris, and A. 

sydowii in addition to the NPs produced by CS and 

biomass of A. fumigatus. Type of peaks also varied 

from intense as in case of A. fumigatus biomass to 

sharp in case of P. pinophilum CS and broad in 

cases of A. carneus biomass, A. sydowii biomass 

and E. nidulans CS.  

For the first time, the fungus A. fumigatus Fresenius 

AUMC 13024 was found relatively suitable in this 

work for the biosynthesis of CuO NPs. It was 

isolated from soil sample collected near Giza city in 

Giza Governorate. The color change from colorless 

to light green was observed when the preformed 

biomass of A. fumigatus contacted with copper 

nitrate as precursor indicating the formation of CuO 

NPs. UV-Vis absorption spectrum of the produced 

NPs showed the formation of an intense peak with 

maximum absorption at 335 nm corresponding to 

the surface plasmon resonance (SPR) of CuO NPs. 

Due to the deficiency of results on CuO NPs from 

fungi, we obliged to compare the results with those 

used other sources of synthesis. A broad absorption 

peak was observed around 365 nm for CuO NPs 

biosynthesized using extract of E.coli2. Moreover, 

other broad absorption peak with maximum at 310 

nm was obtained for CuO NPs produced using leaf 

extract from Eichhornia12. On the other hand, the 

CuO NPs synthesized using leaf extract from 

certain medicinally important plants20 were found to 

have SPR absorption band at 220-235 nm in the 

UV-Vis spectra. 

Optimization  
Factors affecting the biosynthesis of CuO NPs using 

the preformed biomass of A. fumigatus was then 

investigated aiming at optimization of the 

biosynthetic process. pH value of the reaction 

mixture is a critical factor influencing the NPs 

formation (Figure No.1). Biosynthesis of CuO NPs 

by A. fumigatus biomass was achieved as optimum 

near neutrality as their maximal formation was 

recorded at pH 6. A decrease in the yield was 

recorded on both sides of the optimum until no NPs 

formation was detected at pH 10. This pH may be 

the best favorable for formation of the important 

biomolecules especially proteins responsible for the 

bio-reduction of the copper salt to CuO NPs. In this 

case, both acidic and alkaline pH values may 

denature such biomolecules. The change of the pH 

did not affect the maximum absorption of the 

produced NPs. Effect of reaction temperature in the 

range of 28-40oC on the biosynthesis of CuO NPs 

was demonstrated in Figure No.2. It is evident that 

the highest synthesis was revealed at 30oC. A 

decline in the NPs yield was observed by decreasing 

or increasing the temperature and at 40oC no yield 

was obtained. The biosynthesis process was then 

followed on using different concentrations of the 

precursor Cu (NO3)2.3H2O and the results are 

presented in Figure No.3. Increasing the 

concentrations from 0.5 mM to 1 mM enhanced the 

yield of the CuO NPs. Any further increase 

depressed the biosynthetic process and at 5 mM no 

NPs were produced. It is of interest to note that at 2 

mM a blue shift of the absorption spectrum was 

observed and changed to 225 nm instead of 335 nm. 

Also, the peak at this concentration lost many of its 

intensity. After stabilization of the studied 

conditions, the biosynthesis was followed at 

different periods of incubation (Figure No.4). 

Production of the CuO NPs was initiated sluggishly, 

but starting to be visible after 24 h with good 

absorption at 335 nm. The biosynthetic process was 

accelerates after that as indicated by increase in the 
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yield and formation of an intense peak at the same 

wavelength. The maximal yield was recorded after 

60 h of incubation. Worthy of mentioning is that no 

other peaks were recorded in the absorption 

spectrum indicating purity of the biosynthesized 

NPs. HR-TEM was used to determine the 

morphology details of the biosynthesized CuO NPs. 

The micrograph (Figure No.5) show spherical 

uniformly distributed NPs with no signs of 

agglomeration. 

DPPH radical scavenging activity 

The RSA of the biosynthesized CuO NPs using A. 

fumigatus preformed biomass was examined in vitro 

using DPPH scavenging assay which is widely used 

to study the radical scavenging property of 

materials. The maximum scavenging activity of 

CuO NPs against DPPH was detected when used at 

100µg/ml to be 73.65% in comparison with 88.13% 

for the standard antioxidant ascorbic acid (Figure 

No.6). The half maximal inhibitory concentration 

(IC50) is a measure of the effectiveness of a 

substance in inhibiting a specific biological or 

biochemical function. It was calculated to be 55 and 

31.5μg/ml for the NPs and the standard, 

respectively. Antioxidant activity of the NPs was 

rendered to the preferential adsorption of the 

antioxidant material onto their surface21. CuO NPs 

biosynthesized in this work showed good 

antioxidant activity with less toxicity thereby can be 

used as potential candidate for various biomedical 

applications.  
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Table No.1: Potentiality of the Isolated Soil Fungi as Producers of CuO NPs 

Fungus Source 
Formation   of 

NPs 

Yield 

(Au) 

SPR band 

(nm) 

Type of 

peak 

Alternaria alternata (Fries) Keissler AUMC 

13015 

Biomass - - - - 

Cs - - - - 

Aspergillus aureoterreus Samson et al. AUMC 

13006 

Biomass - - - - 

CS + 0.60 350 Good 

Aspergillus carneus Blochwitz AUMC 13007 
Biomass + 0.33 315 Broad 

CS + 0.50 320 Broad 

Aspergillusflavus Link 

AUMC 8653 

Biomass - - - - 

CS - - - - 

Aspergillus flavus var. columnaris Raper and 

Fennell AUMC 13012 

Biomass ± 0.10 335 Broad 

CS - - - - 

Aspergillus fumigatus Fresenius AUMC 13024 
Biomass ++ 0.90 335 Intense 

CS + 0.61 335 Good 

Aspergillus niger Van Tieghem AUMC 13022 
Biomass - - - - 

CS - - - - 

Aspergillus sydowii (Bainier and Sartory) 

Thom and Church 

Biomass + 0.37 335 Broad 

CS - - - - 

Aspergillus terreus  Thom 

AUMC 13019 

Biomass - - - - 

CS - - - - 

Cladosporium cladosporioides (Fresenius) de 

Varies AUMC 13021 

Biomass - - - - 

CS  -- - - 

Corynoas cussepedonium (Emmons) Von Arx 

AUMC 13016 

Biomass - - - - 

CS - - -  

Eupenicillium hirayamae Sott and Stolk 

AUMC 13009 

Biomass - - - - 

CS - - - - 

Emericella nidulans (Eidam) Vuillemin AUMC 

8623 

Biomass - - - - 

CS + 0.50 325 Broad 

Fusarium subglutinans (wollenweber and 

Reinking) Nelson      et al. AUMC 13008 

Biomass - - - - 

CS - - - - 

Humicolagrisea Traaen 

AUMC 13020 

Biomass - - - - 

CS - - - - 

Penicillium aurantiogriseum Dierckx AUMC 

13013 

Biomass - - - - 

CS - - - - 

Penicillium brevicompactum Dierckx AUMC 

13014 

Biomass - - - - 

CS - - - - 

Penicillium pinophilum Hedgcock AUMC 

13011 

Biomass - - - - 

CS + 0.59 360 Sharp 

Scedosporium apiospermum (Sacc.) Sacc. 

AUMC 13017 

Biomass - - - - 

CS - - - - 
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Figure No.1: Biosynthesis of CuO NPs by A. fumigatus biomass as influenced by different pH values 

 
Figure No.2: Biosynthesis of CuO NPs by A. fumigatus biomass as influenced by different reaction 

temperatures 

 
Figure No.3: Influence of changing copper nitrate concentration on the biosynthesis of CuO NPs using A. 

fumigatus biomass 
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Figure No.4: Biosynthesis of CuO NPs using A. fumigatus biomass after different reaction times 

 
Figure No.5: TEM micrograph of CuO NPs biosynthesized using A. fumigatus preformed biomass from 

copper nitrate 

 
Figure No.6: DPPH free radical scavenging activity of the biosynthesized CuO NPs in comparison with 

ascorbic acid 
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CONCLUSION 

Biosynthesis of copper oxide nanoparticles is rarely 

explored using fungi. This work is a trial to bridge 

the gap in this respect. Aspergillus fumigatus was 

suggested in a preliminary screening of nineteen 

different fungi as good producer for these 

nanoparticles. This fungus was isolated from soil 

sample collected near Giza, Egypt. Most important 

factors affecting the reaction were optimized for 

this fungus. The absorption spectrum of the 

biosynthesized nanoparticles reached its maximum 

at 335nm with an intense peak. These nanoparticles 

were spherical in shape and had good free radical 

scavenging activity. 
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